Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Chem Inf Model ; 61(12): 5763-5773, 2021 12 27.
Article in English | MEDLINE | ID: covidwho-1608918

ABSTRACT

COVID-19 caused by a novel coronavirus (SARS-CoV-2) has been spreading all over the world since the end of 2019, and no specific drug has been developed yet. 3C-like protease (3CLpro) acts as an important part of the replication of novel coronavirus and is a promising target for the development of anticoronavirus drugs. In this paper, eight machine learning models were constructed using naïve Bayesian (NB) and recursive partitioning (RP) algorithms for 3CLpro on the basis of optimized two-dimensional (2D) molecular descriptors (MDs) combined with ECFP_4, ECFP_6, and MACCS molecular fingerprints. The optimal models were selected according to the results of 5-fold cross verification, test set verification, and external test set verification. A total of 5766 natural compounds from the internal natural product database were predicted, among which 369 chemical components were predicted to be active compounds by the optimal models and the EstPGood values were more than 0.6, as predicted by the NB (MD + ECFP_6) model. Through ADMET analysis, 31 compounds were selected for further biological activity determination by the fluorescence resonance energy transfer (FRET) method and cytopathic effect (CPE) detection. The results indicated that (+)-shikonin, shikonin, scutellarein, and 5,3',4'-trihydroxyflavone showed certain activity in inhibiting SARS-CoV-2 3CLpro with the half-maximal inhibitory concentration (IC50) values ranging from 4.38 to 87.76 µM. In the CPE assay, 5,3',4'-trihydroxyflavone showed a certain antiviral effect with an IC50 value of 8.22 µM. The binding mechanism of 5,3',4'-trihydroxyflavone with SARS-CoV-2 3CLpro was further revealed through CDOCKER analysis. In this study, 3CLpro prediction models were constructed based on machine learning algorithms for the prediction of active compounds, and the activity of potential inhibitors was determined by the FRET method and CPE assay, which provide important information for further discovery and development of antinovel coronavirus drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Bayes Theorem , Fluorescence Resonance Energy Transfer , Humans , Protease Inhibitors/pharmacology
2.
Front Genet ; 12: 728960, 2021.
Article in English | MEDLINE | ID: covidwho-1417081

ABSTRACT

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

3.
Biochem Pharmacol ; 183: 114302, 2021 01.
Article in English | MEDLINE | ID: covidwho-893616

ABSTRACT

Baicalein is the main active compound of Scutellaria baicalensis Georgi, a medicinal herb with multiple pharmacological activities, including the broad anti-virus effects. In this paper, the preclinical study of baicalein on the treatment of COVID-19 was performed. Results showed that baicalein inhibited cell damage induced by SARS-CoV-2 and improved the morphology of Vero E6 cells at a concentration of 0.1 µM and above. The effective concentration could be reached after oral administration of 200 mg/kg crystal form ß of baicalein in rats. Furthermore, baicalein significantly inhibited the body weight loss, the replication of the virus, and relieved the lesions of lung tissue in hACE2 transgenic mice infected with SARS-CoV-2. In LPS-induced acute lung injury of mice, baicalein improved the respiratory function, inhibited inflammatory cell infiltration in the lung, and decreased the levels of IL-1ß and TNF-α in serum. In conclusion, oral administration of crystal form ß of baicalein could reach its effective concentration against SARS-CoV-2. Baicalein could inhibit SARS-CoV-2-induced injury both in vitro and in vivo. Therefore, baicalein might be a promising therapeutic drug for the treatment of COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19 Drug Treatment , COVID-19/pathology , Flavanones/therapeutic use , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Antioxidants/pharmacokinetics , COVID-19/metabolism , Chlorocebus aethiops , Dose-Response Relationship, Drug , Female , Flavanones/pharmacokinetics , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Random Allocation , Rats , Rats, Sprague-Dawley , Treatment Outcome , Vero Cells
4.
Lancet ; 395(10236): 1569-1578, 2020 05 16.
Article in English | MEDLINE | ID: covidwho-824547

ABSTRACT

BACKGROUND: No specific antiviral drug has been proven effective for treatment of patients with severe coronavirus disease 2019 (COVID-19). Remdesivir (GS-5734), a nucleoside analogue prodrug, has inhibitory effects on pathogenic animal and human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro, and inhibits Middle East respiratory syndrome coronavirus, SARS-CoV-1, and SARS-CoV-2 replication in animal models. METHODS: We did a randomised, double-blind, placebo-controlled, multicentre trial at ten hospitals in Hubei, China. Eligible patients were adults (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, with an interval from symptom onset to enrolment of 12 days or less, oxygen saturation of 94% or less on room air or a ratio of arterial oxygen partial pressure to fractional inspired oxygen of 300 mm Hg or less, and radiologically confirmed pneumonia. Patients were randomly assigned in a 2:1 ratio to intravenous remdesivir (200 mg on day 1 followed by 100 mg on days 2-10 in single daily infusions) or the same volume of placebo infusions for 10 days. Patients were permitted concomitant use of lopinavir-ritonavir, interferons, and corticosteroids. The primary endpoint was time to clinical improvement up to day 28, defined as the time (in days) from randomisation to the point of a decline of two levels on a six-point ordinal scale of clinical status (from 1=discharged to 6=death) or discharged alive from hospital, whichever came first. Primary analysis was done in the intention-to-treat (ITT) population and safety analysis was done in all patients who started their assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04257656. FINDINGS: Between Feb 6, 2020, and March 12, 2020, 237 patients were enrolled and randomly assigned to a treatment group (158 to remdesivir and 79 to placebo); one patient in the placebo group who withdrew after randomisation was not included in the ITT population. Remdesivir use was not associated with a difference in time to clinical improvement (hazard ratio 1·23 [95% CI 0·87-1·75]). Although not statistically significant, patients receiving remdesivir had a numerically faster time to clinical improvement than those receiving placebo among patients with symptom duration of 10 days or less (hazard ratio 1·52 [0·95-2·43]). Adverse events were reported in 102 (66%) of 155 remdesivir recipients versus 50 (64%) of 78 placebo recipients. Remdesivir was stopped early because of adverse events in 18 (12%) patients versus four (5%) patients who stopped placebo early. INTERPRETATION: In this study of adult patients admitted to hospital for severe COVID-19, remdesivir was not associated with statistically significant clinical benefits. However, the numerical reduction in time to clinical improvement in those treated earlier requires confirmation in larger studies. FUNDING: Chinese Academy of Medical Sciences Emergency Project of COVID-19, National Key Research and Development Program of China, the Beijing Science and Technology Project.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Betacoronavirus , COVID-19 , China , Double-Blind Method , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Negative Results , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
5.
Trials ; 21(1): 422, 2020 May 24.
Article in English | MEDLINE | ID: covidwho-342726

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by a novel corinavirus (later named SARS-CoV-2 virus), was fistly reported in Wuhan, Hubei Province, China towards the end of 2019. Large-scale spread within China and internationally led the World Health Organization to declare a Public Health Emergency of International Concern on 30th January 2020. The clinical manifestations of COVID-19 virus infection include asymptomatic infection, mild upper respiratory symptoms, severe viral pneumonia with respiratory failure, and even death. There are no antivirals of proven clinical efficacy in coronavirus infections. Remdesivir (GS-5734), a nucleoside analogue, has inhibitory effects on animal and human highly pathogenic coronaviruses, including MERS-CoV and SARS-CoV, in in vitro and in vivo experiments. It is also inhibitory against the COVID-19 virus in vitro. The aim of this study is to assess the efficacy and safety of remdesivir in adult patients with severe COVID-19. METHODS: The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. This is a phase 3, randomized, double-blind, placebo-controlled, multicentre trial. Adults (≥ 18 years) with laboratory-confirmed COVID-19 virus infection, severe pneumonia signs or symptoms, and radiologically confirmed severe pneumonia are randomly assigned in a 2:1 ratio to intravenously administered remdesivir or placebo for 10 days. The primary endpoint is time to clinical improvement (censored at day 28), defined as the time (in days) from randomization of study treatment (remdesivir or placebo) until a decline of two categories on a six-category ordinal scale of clinical status (1 = discharged; 6 = death) or live discharge from hospital. One interim analysis for efficacy and futility will be conducted once half of the total number of events required has been observed. DISCUSSION: This is the first randomized, placebo-controlled trial in COVID-19. Enrolment began in sites in Wuhan, Hubei Province, China on 6th February 2020. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04257656. Registered on 6 February 2020.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Alanine/administration & dosage , Alanine/adverse effects , Antiviral Agents/adverse effects , Betacoronavirus/pathogenicity , COVID-19 , China , Clinical Trials, Phase III as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Double-Blind Method , Equivalence Trials as Topic , Female , Humans , Infusions, Intravenous , Male , Multicenter Studies as Topic , Pandemics , Patient Safety , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Risk Assessment , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL